Sabtu, 22 September 2018

Determinan Matriks Metode Chio, Sifat-Sifat Determinan Matriks dan Dekomposisi Matriks Metode Crout


  • Determinan Matriks Metode Chio
          Metode chio merupakan salah satu metode yang dapat digunakan dalam menentukan determinan matriks yang memiliki ordo n \times n dengan n \geq 3. Metode ini menyusutkan determinan matriks ordo n \times n menjadi ordo (n-1) \times (n-1) dan dikalikan dengan elemen a_{11}. Proses kondensasi ini berakhir pada determinan matriks ordo 2 \times 2Tanpa mengurangi perumuman, dalam tulisan ini menggunakan matriks persegi dengan syarat elemen a_{11} \neq 0.
          Perhatikan untuk matrik dengan ordo 3 \times 3. Persamaan yang digunakan untuk metode chio ini sebagai berikut.
det(A) = \dfrac{1}{(a_{11})^{3-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix}\\ &\\ \begin{vmatrix} a_{11}  & a_{12}\\ a_{31} & a_{32} \end{vmatrix} & \begin{vmatrix} a_{11}  & a_{13}\\ a_{31} & a_{33} \end{vmatrix} \end{vmatrix}
          Selanjutnya untuk matrik dengan ordo 4 \times 4. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.
det(A) = \dfrac{1}{(a_{11})^{4-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \begin{vmatrix}  a_{11} & a_{14}\\ a_{21} & a_{24} \end{vmatrix}\\ &&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{14}\\ a_{31} & a_{34}  \end{vmatrix}\\ &&\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{41} &  a_{42} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{41} &  a_{43} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{14}\\  a_{41} & a_{44} \end{vmatrix}\\ \end{vmatrix}
    Apabila ukuran matriksnya diperluas atau diperumum menjadi n \times n, maka diperoleh        persamaan untuk metode CHIO adalah sebagai berikut.
det(A) = \dfrac{1}{(a_{11})^{n-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \ldots & \begin{vmatrix}  a_{11} & a_{1n}\\ a_{21} & a_{2n} \end{vmatrix}\\ &&&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{31} & a_{3n}  \end{vmatrix}\\ &&&\\ \vdots & \vdots & \ddots &  \vdots\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{n1} & a_{n2}  \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{n1} & a_{n3}  \end{vmatrix} & \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{n1}  & a_{nn} \end{vmatrix}\\ \end{vmatrix}
Contoh :
1. Hitung determinan matriks A = \begin{bmatrix} -2&1&4\\ 3&-5&2\\ 5&2&1 \end{bmatrix}.
Dengan menggunakan metode CHIO, maka didapat
det(A) = \dfrac{1}{(-2)^{3-2}} \begin{vmatrix} \begin{vmatrix} -2&1\\ 3&-5  \end{vmatrix} & \begin{vmatrix} -2&4\\ 3&2 \end{vmatrix}\\ &\\  \begin{vmatrix} -2&1\\ 5&2 \end{vmatrix} & \begin{vmatrix} -2&4\\  5&1 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{-2} \begin{vmatrix} (-5)(-2)-(3)(1) & (-2)(2)-(3)(4)\\ (-2)(2)-(1)(5) & (-2)(1)-(4)(5) \end{vmatrix}
= \dfrac{1}{-2} \begin{vmatrix} 7&-16\\ -9&-22 \end{vmatrix}
= \dfrac{1}{-2} (7 \cdot -22-(-16) \cdot -9)
= \dfrac{1}{-2} (-154-144)
= \dfrac{1}{-2} (-298)
= -149
2. Hitung determinan matriks B = \begin{bmatrix} 2&1&6&7\\ 3&2&4&5\\ 4&4&2&3\\ 5&6&1&4 \end{bmatrix}.
Dengan menggunakan metode CHIO, maka didapat
det(B) = \dfrac{1}{(2)^{4-2}} \begin{vmatrix} \begin{vmatrix} 2&1\\ 3&2  \end{vmatrix} & \begin{vmatrix} 2&6\\ 3&4 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 3&5 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  4&4 \end{vmatrix} & \begin{vmatrix} 2&6\\ 4&2 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 4&3 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  5&6 \end{vmatrix} & \begin{vmatrix} 2&6\\ 5&1 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 5&4 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{2^2} \begin{vmatrix} (2)(2)-(3)(1) & (2)(4)-(3)(6) & (2)(5)-(3)(7)\\ (2)(4)-(1)(4) & (2)(2)-(4)(6) & (2)(3)-(7)(4)\\ (2)(6)-(1)(5) & (2)(1)-(6)(5) & (2)(4)-(7)(5) \end{vmatrix}
= \dfrac{1}{4} \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27  \end{vmatrix}
Misal C = \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27 \end{vmatrix}, diperoleh
det(C) = \dfrac{1}{1^{3-2}} \begin{vmatrix} \begin{vmatrix} 1&-10\\ 4&-20  \end{vmatrix} & \begin{vmatrix} 1&-11\\ 4&-22 \end{vmatrix}\\  &\\ \begin{vmatrix} 1&-10\\ 7&-28 \end{vmatrix} &  \begin{vmatrix} 1&-11\\ 7&-27 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{1} \begin{vmatrix} (1)(-20)-(4)(-10) & (1)(-22)-(-11)(4)\\ (1)(-28)-(-10)(7)  & (1)(-27)-(-11)(7) \end{vmatrix}
= \begin{vmatrix} 20 & 22\\ 42 & 50 \end{vmatrix}
= (20 \cdot 50-22 \cdot 42
= 1000-924
= 76 
Sifat-Sifat Determinan Matriks
  • Jika A adalah sebarang matriks kuadrat yang mengandung sebaris bilangan nol, maka det(A) = 0.
Contoh :
misal matriks A = \left [ \begin{array}{rrr} 1& 2& 3\\ 1& 0& 1\\ 0& 0& 0 \end{array} \right ]
dengan menggunakan Aturan Kofaktor, maka
det(A) = \left | \begin{array}{rrr} 1& 2& 3\\ 1& 0& 1\\ 0& 0& 0 \end{array} \right |
= a31M31 – a32M32 + a33M33
= 0\left | \begin{array}{rr} 2& 3\\ 0& 1 \end{array} \right | – 0\left | \begin{array}{rr} 1& 3\\ 1& 1 \end{array} \right | + 0\left | \begin{array}{rr} 1& 2\\ 1& 0 \end{array} \right |
= 0(2.1 – 3.0) – 0(1.1 – 1.3) + 0(1.0 – 1.2)
= 0

  • Jika A adalah matriks segitiga n x n, maka det(A) adalah hasil kali entri-entri pada diagonal utama, yakni det(A) = a11a22 … ann
Contoh : 
det(A) = \left | \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right | 
= a31M31 – a32M32 + a33M33 
= 0\left | \begin{array}{rr} 1& 3\\ 3& 1 \end{array} \right | – 0\left | \begin{array}{rr} 2& 3\\ 0& 1 \end{array} \right | + 3\left | \begin{array}{rr} 2& 1\\ 0& 3 \end{array} \right | 
= 0(1.1 – 3.3) – 0(2.1 – 0.3) + 3(2.3 – 0.1) 
= 0 – 0 + 3.2.3 
= 18 
Hasil ini sama dengan perkalian entri pada diagonal utama yaitu 2 x 3 x 3 = 18 

  • Misalkan A’ adalah matriks yang dihasilkan bila baris tunggal A dikalikan oleh konstanta k, maka det(A’) = k det(A)
Contoh :
misal k = 2 dan A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] maka kA = \left [ \begin{array}{rrr} 4& 2& 6\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ]det(A) = \left | \begin{array}{rrr} 4& 2& 6\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right |berdasarkan Sifat 3 maka det(kA) = det(A’) = 4.3.3 = 36karena det(A) = 18 dan k = 2 maka k.det(A) = 2.18 = 36
jadi, det(A’) = k.det(A) 

  • Misalkan A’ adalah matriks yang dihasilkan bila dua baris A dipertukarkan, maka det(A’) = -det(A)
Contoh :
misal A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] maka kA = \left [ \begin{array}{rrr} 4& 2& 6\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] dan baris 1 ditukar dengan baris 2 sehingga diperoleh matriks A’ = \left [ \begin{array}{rrr} 0& 3& 1\\ 2& 1& 3\\ 0& 0& 3 \end{array} \right ]det(A’) = \left [ \begin{array}{rrr} 0& 3& 1\\ 2& 1& 3\\ 0& 0& 3 \end{array} \right ]= a31M31 – a32M32 + a33M32= 0\left | \begin{array}{rr} 3& 1\\ 1& 3 \end{array} \right | – 0\left | \begin{array}{rr} 0& 1\\ 2& 3 \end{array} \right | + 3\left | \begin{array}{rr} 0& 3\\ 2& 1 \end{array} \right |= 0(3.3 – 1.1) – 0(0.3 – 2.1) + 3(0.1 – 2.3)= 0 – 0 + 3.(-2).3= -18
Jadi, det(A’) = -det(A) 

  • Misalkan A’ adalah matriks yang dihasilkan bila kelipatan satu baris A ditambahkan pada baris lain, maka det(A’) = det(A)
Contoh :
misal A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] kemudian bilakukan Operasi Baris Elementer pada baris kedua yaitu A21 + 2A11 = 4 
                        A22 + 2A12 = 5
                        A23 + 2A13 = 7 
sehingga diperoleh A’ = \left [ \begin{array}{rrr} 2& 1& 3\\ 4& 5& 7\\ 0& 0& 3 \end{array} \right ]det(A’) = \left | \begin{array}{rrr} 2& 1& 3\\ 4& 5& 7\\ 0& 0& 3 \end{array} \right |= a31M31 – a32M32 + a33M33= 0\left | \begin{array}{rr} 1& 3\\ 5& 7 \end{array} \right | – 0\left | \begin{array}{rr} 2& 3\\ 4& 7 \end{array} \right | + 3\left | \begin{array}{rr} 2& 1\\ 4& 5 \end{array} \right |= 0(1.7 – 5.3) – 0(2.7 – 3.4) + 3(2.5 – 4.1)= 0 – 0 + 3.(6)= 18
Jadi, det(A’) = det(A) 

  • Jika A adalah sebarang matriks bujur sangkar, maka det(A) = det(At)
Contoh : 
misal A = \left [ \begin{array}{rrr} 2& 1& 3\\ 0& 3& 1\\ 0& 0& 3 \end{array} \right ] maka At = \left [ \begin{array}{rrr} 2& 0& 0\\ 1& 3& 0\\ 3& 1& 3 \end{array} \right ] 
det(At) = a13M13 – a23M23 + a33M33 
= 0\left | \begin{array}{rr} 1& 3\\ 3& 1 \end{array} \right | – 0\left | \begin{array}{rr} 2& 0\\ 3& 1 \end{array} \right | + 3\left | \begin{array}{rr} 2& 0\\ 1& 3 \end{array} \right | 
= 0(1.1 – 3.3) – 0(2.1 – 3.0) + 3(2.3 – 1.0) 
= 0 – 0 + 3.2.3 
= 18 
Jadi, det(A) = det(At)

  • Jika A dan B adalah matriks kuadrat yang ukurannya sama, maka det(AB) = det(A) det(B)
Contoh :
AB = \left [ \begin{array}{rr} 1& 2\\ 4& 3 \end{array} \right ] \left [ \begin{array}{rr} 4& 3\\ 1& 2 \end{array} \right ]\left [ \begin{array}{rr} 1.4+2.1& 1.3+2.2\\ 4.4+3.1& 4.3+3.2 \end{array} \right ]\left [ \begin{array}{rr} 6& 7\\ 19& 18 \end{array} \right ]det(AB) = 6.18 – 19.7= 108 – 133= -25
Jadi det(A.B) = det(A).det(B) = (-5)(5) = -25 
Dekomposisi Matriks
Metode Crout
Kasus n=3



langkah penyelesaiannya adalah sebagai berikut :

















Contoh :














Tidak ada komentar:

Posting Komentar